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Fig. 4. Network withg = max(0; s).

can be observed in all of our simulation results. This further confirmed
that the network processes the property of absolute periodicity.

V. CONCLUSIONS

In this brief, we have studied the absolute periodicity and absolute
stability of delayed neural networks. We have obtained some simple
and checkable conditions on networks’ connection matrix to guarantee
the absolute periodicity and absolute stability. The fact that neural net-
works have the property of absolute periodicity is an interesting dy-
namic behavior and we believe it will find more applications in prac-
tice.
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Fast Terminal Sliding-Mode Control Design for Nonlinear
Dynamical Systems

Xinghuo Yu and Man Zhihong

Abstract—In this brief, a fast terminal dynamics is proposed and used
in the design of the sliding-mode control for single-input single-output non-
linear dynamical systems. The inherent dynamic properties of the fast ter-
minal sliding modes are explored and conditions to ensure its applicability
for control designs are obtained.

I. INTRODUCTION

Sliding-mode control systems have been studied extensively and
used in many applications [1] due to their robustness and simplicity.
The sliding mode is attained by designing the control laws which
drive the system to reach and remain on the intersection of a set
of prescribed switching manifolds which are commonly selected
as asymptotical stable linear switching hyperplanes. However, for
high-precision control, the asymptotical stability may not deliver a
fast convergence without imposing strong control force. Nonlinear
switching manifolds such as the terminal sliding modes (TSMs), can
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improve the transient performance substantially. TSM control has
been used successfully in control designs [2], [4], [5]. However, in
comparison with the sliding-mode control based on linear switching
hyperplanes, the existing TSM control may not deliver the same
convergence performance when the system state is far away from the
equilibrium, albeit its finite time convergence lies in its exponentially
growing convergence rate when the state is near the equilibrium.

In this brief, we propose a new fast terminal sliding mode (FTSM)
model that is able to combine the advantages of the TSM control and the
conventional sliding-mode control (linear hyperplane based) together
so that fast (finite time) transient convergence both at a distance from
and at a close range of the equilibrium can be obtained. This model can
deliver a control performance that cannot be realized by using either
approach alone. We will fully explore the dynamic properties of the
FTSMs and develop the control design based on FTSMs.

II. THE FAST TERMINAL SLIDING-MODE (FTSM) CONCEPT

The TSM concept first introduced in [2] can be described as

s = _x1 + � x
q=p
1 = 0 (1)

wherex1 2 R1 is a scalar variable, and� > 0 andp; q (p > q)
are positive integers. Note that the parametersp andq must be odd
integers and only the real solution is considered so that, for any real
numberx1, xq=p1 is always a real number. It can be easily verified that,
given any initial statex1(0) 6= 0, the dynamics (1) will reachx1 = 0
in a finite time determined byts = (p=�(p� q))jx1(0)j

(p�q)=p: The
equilibrium 0 is a terminal attractor [3], i.e., the statex1 = 0 can be
reached in a finite time and it is stable. The term “terminal” is referred
to the equilibrium which can be reached in finite time and is stable. The
reaching timets can be tuned by setting parametersp; q; �.

The introduction of the nonlinearity termxq=p1 improves the conver-
gence toward equilibrium. The closer to equilibrium, the faster the con-
vergence rate, resulting in finite time convergence. Note that although
the terminal dynamics is not Liptchitz, for any nonzero initial condi-
tion, the solution in the forward time direction is unique [11].

It is should be noted that there is a close relationship between the
TSM (1) and the time optimal control. In fact, the time optimal control
for the double integrator system [7] can be approximated by a TSM
model.

When the system state is far away from the equilibrium, the TSM
model (1) does not prevail over the linear counterpart (settingp = q)
since the termxq=p1 tends to reduce the magnitude of the convergence
rate at a distance from equilibrium. One immediate solution is to intro-
duce the following so-called fast terminal sliding-mode model:

s = _x1 + � x1 + � x
q=p
1 = 0 (2)

where�; � > 0. By doing so, we have_x1 = �� x1 � � x
q=p
1 . For

properly chosenq; p, given an initial statex1(0) 6= 0, the dynamics
(2) will reachx1 = 0 in finite time. The physical interpretation is:
whenx1 is far away from zero, the approximate dynamics becomes
_x1 = ��x1 whose fast convergence when far away from zero is well
understood. When close tox1 = 0, the approximate dynamics becomes
_x1 = ��x

q=p
1 which is a terminal attractor [3]. More precisely, we can

solve the differential (2) analytically. The exact time to reach zero,ts,
is determined by

ts =
p

�(p� q)
ln(�x1(0)

(p�q)=p + �)� ln � (3)

and the equilibrium 0 is a terminal attractor.

The fast convergence performance of FTSM in comparison with
the conventional linear hyperplane based sliding mode can be demon-
strated by the following example. Consider� = 1 and� = 1 and
initial condition x1(0) = 1. First let us assumep = 3 amd q =
1. From (3), one can easily find that the time to reach zero ists =
1:039 720 77083992. We now compare the above with the situation
wherep andq are set to 1. The simulation suggests that at approxi-
matets = 1:03969999999990, for the case ofp = 3 andq = 1,
x1(t

s) = 0:000000091785 40 and for the case ofp = 1 andq = 1,
x1(t

s) = 0:12500519281775. It is evident that the convergence rate
of the FTSM is far better than its linear counterpart. The obvious reason
is when close to the equilibrium, the convergence rate of the linear hy-
perplane based sliding mode remains a constant while the convergence
rate of the FTSM grows exponentially.

Based on the the FTSM in (2), we now propose the following new
recursive procedure for FTSM control of higher order systems:

s1 =_s0 + �0s0 + �0s
q =p
0 (4)

s2 =_s1 + �1s1 + �1s
q =p
1 (5)

...
...

sn�1 =_sn�2 + �n�2sn�2 + �n�2s
q =p
n�2 (6)

wheres0 = x1, �i > 0, �i > 0 andqi, pi(i = 0; . . . ; n � 2) are
positive odd numbers. The same analog applies that oncesn�1 = 0 is
reached,sn�2 will reach zero in finite time, and so willsn�3; . . . ; s0.
It is easy to establish that the time to reach the equilibrium is

T =

n

i=1

ti = tn

+

n�1

i=1

pi�1
�i�1(pi�1 � qi�1)

� ln(�i�1si�1(ti)
(p �q )=p +p )� ln �i�1 (7)

wheretn is the time to reach the terminal sliding modesn�1 while

ti =
pi�1

�i�1(pi�1 � qi�1)

� ln(�i�1si�1(ti)
(p �q )=p p )� ln�i�1

for i = n� 1; . . . ; 1 is the time fromsi(ti) 6= 0 to si(ti + ti�1) = 0.
Note that the procedure (4)–(6) actually defines a path for the state

x to converge to equilibrium. Indeed, ifsn�1 = 0 is considered as
n � 1-dimensional flow in the state space,sn�2 can be considered as
a subspace with dimension shrunk by unity. Therefore,s0 = 0 will be
the result of then � 1-dimensional dynamic space shrunk byn � 1
times.

III. CONTROL DESIGN USING FTSMS

We consider the general nonlinear smooth single-input single-output
(SISO) system

_x =f(x) + g(x)u

y =h(x) (8)

wheref and g are the smooth vector fields onRn, h is the scalar
smooth field onRn, andu 2 R1.

Before we proceed, we introduce several notations. The Lie deriva-
tive ofhwith respect tof is defined as the directional derivativeLfh =
5h where5h = (@h=@x) representing the gradient ofh. Higher
order Lie derivatives can be defined recursively asLi

fh = 5(Li�1
f h)f

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:58:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 2, FEBRUARY 2002 263

for i = 1; 2; . . . with L0fh = h (see [8]). Without loss of generality,
we assume that the SISO system (8) has relative degreen in a region

 2 Rn.

With the assumption, in
, the nonlinear system (8) can be trans-
formed to the following normal form:

_zi =zi+1 i = 1; . . . ; n� 1

_zn =a(z) + b(z)u (9)

wherezi = Li�1f h(x) for i = 1; . . . ; n, a(z) = Lnfh(x), andb(z) =
LgL

n�1
f h(x) 6= 0. The transformation matrix is easily seen asz =

�(x) = [h(x);Lfh(x); . . . ;L
n�1
f h(x)]T : The dynamics (9) can also

be written as

_z = A(z) +B(z)u (10)

whereA(z) = [z2; . . . ; zn�1; a(z)]
T andB(z) = [0; . . . ; 0; b(z)]T .

The sliding-mode controlu should be designed so thatsn�1 _sn�1 <
�Kjsn�1j; K > 0 thereforesn�1 = 0 can be reached in finite
time. Hence, according to (4)–(6),x1 = 0 is reached in finite time.
Following are some results on the FTSM control of the SISO nonlinear
systems.

Theorem 1: For the system (8), if the controlu is designed as

u = ueq + ud (11)

where

ueq =� b�1(z)

� a(z) +

n�2

k=0

�kL
n�k�1
A+Bu sk + �kL

n�k�1
A+Bu s

q =p
k ;

ud =� b�1(z)K signsn�1

K >0

with K > 0 being a constant, then the system will reach the sliding
modesn�1 = 0 in finite time.

Proof: To ensure the finite time reachability of the sliding mode
sn�1 = 0, the conditionsn�1 _sn�1 < �Kjsn�1j should be satisfied.
Taking the first-order derivative ofsn�1, one has

_sn�1 = �sn�2 + �n�2 _sn�2 + �n�2LA+Bus
q =p
n�2 (12)

sincesi = _si�1 + �i�1si�1 + �i�1s
q =p

i�1 , for i = n � 1; n �
2; . . . ; 1 and thelth-order derivative ofsi is

LlA+Busi = Ll+1A+Bu _si�1 + �i�1L
l
A+Busi�1

+�i�1L
l
A+Bu(s

q =p

i�1 )

then it can be easily calculated that

_sn�1 =LnA+Bus0 +

n�2

k=0

�kL
n�k�1
A+Bu sk +

n�2

k=0

�kL
n�k�1
A+Bu s

q =p
k

= _zn +

n�2

k=0

�kL
n�k�1
A+Bu sk +

n�2

k=0

�kL
n�k�1
A+Bu s

q =p
k : (13)

Substituting the control (11) into (13) yieldssn�1 _sn�1 = �Kjsn�1j
which means that the sliding modesn�1 = 0 will then be reached in
finite time. In fact, following Section II, from any initial state att0 = 0,
the time to reach zero istn = jSn�1(0)j=k. Hence, the proof of the
theorem is completed. Q.E.D.

The control (11) involves calculation of the terms
Ln�k�1A+Bu s

q =p

k , k = 0; . . . ; n � 2 that is lengthy and trivial.
Here we present a qualitative result for the calculation of these terms
and also show that these terms are independent of the controlu.

Theorem 2: For anyk 2 f0; 1; . . . ; n � 2g,

Ln�k�1A+Bu s
q =p
k = fk(z) (14)

wherefk is a continuous nonlinear function.
Proof: We prove this proposition using the mathe-

matical induction approach. Letk = 0, then apparently
Ln�1A+Bus

q =p
0 = Ln�1A+Buz

q =p
1 = f0(z). Let k = 1, then

Ln�2A+Bus
q =p
1 = Ln�2A+Bu(z2 + �0z1 + �0z

q =p
1 )q =p which

can be apparently expressed asf1(z). Assume for k = k0,

Ln�k �1A+Bu s
q =p

k = fk (z). Let us examine the case ofk = k0 + 1.
Since

sk =fk ( _sk �1; sk �1)

=fk (�sk �2; _sk �2; sk �2) = � � �

=fk (s
(k )
0 ; s

(k �1)
0 ; . . . ; s0)

ands0 = z1, thens(l)k is a function ofzk +l+1; zk +l; . . . ; z1. There-

fore,Ln�k �2A+Bu s
q =p

k +1 is a function ofz. Q.E.D.
The parametersqk, pk must be chosen carefully in order to avoid the

singularity because there are terms indn�k�1=dtn�k�1s
q =p
k which

may contain nagative powers so that, whensk�1 ! 0, u ! 1. This
problem can be remedied by the following theorem.

Theorem 3: If

qk
pk

>
n� k � 1

n� k

then, whensk ! 0 sequentially fromk = n � 2 to k = 0, u is
bounded.

Proof: From the rule for thenth derivative of a composite func-
tion [10], we have that for functionF (s)

dn

dtn
F (s) =

n!

i1!i2! . . . il!

dmF

dsm
_s

1!

i
�s

2!

i

�
s(3)

3!

i

� � �
s(l)

l!

i

(15)

over all solutions in nonnegative integers of the equationi1 + 2i2 +
3i3 + � � � lil = n andm = i1 + i2 + i3 + � � �+ il. For simplicity, let
r = qk=pk and drop the indexk. Since in the sliding modesk+1 = 0,

sk+1 = _sk + �ksk + �ks
q =p
k = _s+ �s+ �sr = 0

then _s = O(sr) whens ! 0, whereO is a complexity function.
We therefore havedmF=dsm = O(sr�m) ands(d) = ( _s)(d�1) =
O(sdr�(d�1)). So, we then have (16), shown at the bottom of the page.
Hence whens! 0, i.e.,sk ! 0, (n+1)r�n = (n+1)qk=pk�n > 0

dn

dtn
F (s) = O(sr�m)O(si r)O si (2r�1) � � � O si (lr�(l�1))

= O(sr�m)O sr(i +2i +3i +���+li )+(i +i +i +���+i )�(i +2i +3i +���+li )

= O(sr�m)O(snr+m�n) = O y(n+1)r�n (16)
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will ensure that (16) is bounded. Also from the above analysis, we have
dn=dtns = ( _s)(n�1) = O(sr)(n�1) = O(snr�n+1). Hence when
s! 0, nr� n+ 1 = nqk=pk � n+ 1 > 0 will ensure thatdn=dtns
is bounded. With the above expressions in mind, the control (11) can
be rewritten as

u =� b�1(z)

� a(z) +

n�2

k=0

O s
(n�k�1)q =p �(n�k�1)+1
k

+O s
(n�k)q =p �(n�k�1)
k

+K sgnsn�1 : (17)

For the second term of (17) to be bounded whilesk ! 0, it is sufficient
that(n� k)qk=pk � (n� k � 1) > 0 for sk ! 0 sequentially from
k = n� 2 to k = 0 so that the controlu is bounded. Q.E.D.

Another kind of singularity is that, during the transient process to-
ward the FTSMs, the control may become singular if somesi becomes
zero. This problem can be avoided by prohibiting the trajectory from
reaching any of the switching manifoldssi = 0 (i = 0; 1; . . . ; h� 1)
beforesh = 0 is reached (0 < h � n� 1). One can use the two-phase
control strategy in [6] to avoid this. Oncesn�1 = 0 is reached, the sin-
gularity problem will no longer exist and then trajectoryz(t) will first
reachsn�1 = 0 and thensn�2 = 0; . . . ; s0 = 0 sequentially.

For the nonlinear system (8) with external disturbances and noises
v, _x = f(x)+ g(x)u+ d(x)v, y = h(x), if d(x) 2 range(g(x)), i.e.,
the matching condition is satisfied [9], then a slight modification of
control (11) will guarantee the stability, the reachability of the sliding
modes, and finite time reachability of the system equilibrium. Our re-
cent study on robot control has shown that FTSM control has a better
control precision and robustness than its linear counterpart (the results
will be reported elsewhere). In fact, FTSM control is a high gain con-
trol when near the equilibrium.

It should be noted that many problems, such as chaos synchroniza-
tion, chaotic communication, filter design, and others in the area of
circuits and systems, can be formulated in the control problem frame-
work. Making use of the principle developed in this paper will result in
a high-precision control/tracking/estimation performance.

IV. CONCLUSION

We have proposed a fast terminal dynamics is for the design of
sliding-mode control for SISO nonlinear dynamical systems. The
inherent dynamic properties of the FTSMs have been explored and
conditions to ensure its applicability for control design have been
derived. Simulation results of a chaos synchronization problem and
control of a flexible joint robot arm have shown the effectiveness of
the control strategy developed. The FTSM control has demonstrated
its superior performance. It should be noted the control strategy
developed in this paper can be applied to a wide range of applications
in circuits and systems, for example, in chaos communication and
synchronization, filter designs, etc. Future work will be conducted
in applying this mechanism to more general problems in control,
optimization, and identification.
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