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improve the transient performance substantially. TSM control hasThe fast convergence performance of FTSM in comparison with
been used successfully in control designs [2], [4], [5]. However, ie conventional linear hyperplane based sliding mode can be demon-
comparison with the sliding-mode control based on linear switchirggrated by the following example. Consider= 1 and3 = 1 and
hyperplanes, the existing TSM control may not deliver the sanmeitial condition 21 (0) = 1. First let us assumg = 3 amdg =
convergence performance when the system state is far away from thé&rom (3), one can easily find that the time to reach zert is=
equilibrium, albeit its finite time convergence lies in its exponentially¥.039 720 770 839 92. We now compare the above with the situation
growing convergence rate when the state is near the equilibrium. wherep andq are set to 1. The simulation suggests that at approxi-
In this brief, we propose a new fast terminal sliding mode (FTSMpatet’ = 1.039699 999 999 90, for the case op = 3 andgq = 1,
model thatis able to combine the advantages of the TSM control and thé¢*) = 0.000 000091 785 40 and for the case gf = 1 andg = 1,
conventional sliding-mode control (linear hyperplane based) togethar(¢*) = 0.125005 192817 75. It is evident that the convergence rate
so that fast (finite time) transient convergence both at a distance fraithe FTSMis far better than its linear counterpart. The obvious reason
and at a close range of the equilibrium can be obtained. This model éawhen close to the equilibrium, the convergence rate of the linear hy-
deliver a control performance that cannot be realized by using eithgarplane based sliding mode remains a constant while the convergence
approach alone. We will fully explore the dynamic properties of thete of the FTSM grows exponentially.
FTSMs and develop the control design based on FTSMs. Based on the the FTSM in (2), we now propose the following new
recursive procedure for FTSM control of higher order systems:

Il. THE FAST TERMINAL SLIDING-MODE (FTSM) CONCEPT

irsti i ; 51 =50 + apso + /30330/"0 (4)
The TSM concept first introduced in [2] can be described as i e

s2 =61 + 51 + Pis] )

s:i’l+,3;vi’/p:0 1)
i i Sp—1 =8p—2 + n—28n—2 + ,Hn_gsi”:;/p”*z (6)

wherex; € R' is a scalar variable, and > 0 andp,q (p > q)
are positive integers. Note that the paramefeesnd ¢ must be odd wheres, = z1, ; > 0, 3 > 0 andgi, pi(i = 0,...,n — 2) are
integers and only the real solution is considered so that, for any reakitive odd numbers. The same analog applies thatance= 0 is
numberz, ;pg/P is always a real number. It can be easily verified thateacheds,, _» will reach zero in finite time, and so Wi, _s, ... so.

given any initial stater; (0) # 0, the dynamics (1) will reachy = 0 |t js easy to establish that the time to reach the equilibrium is
in a finite time determined by’ = (p/3(p — ¢))|1(0)|*~9/?. The
equilibrium 0 is a terminal attractor [3], i.e., the state = 0 can be "
reached in a finite time and it is stable. The term “terminal” is referred © = Z ti=tn
to the equilibrium which can be reached in finite time and is stable. The ’”77_1
reaching time® can be tuned by setting parametgrs;, 3. n Z Pi—1
The introduction of the nonlinearity termf/p improves the conver- P @1 (Pi—1 — ¢i—1)
gence toward equilibrium. The closer to equilibrium, the faster the con-
vergence rate, resulting in finite time convergence. Note that although
the terminal dynamics is not Liptchitz, for any nonzero initial condi- ) . . o )
tion, the solution in the forward time direction is unique [11]. wheret, is the time to reach the terminal sliding made-, while
It is should be noted that there is a close relationship between the Pi1
TSM (1) and the time optimal control. In fact, the time optimal contrdl = Qi1 (pict — qiz1)
::])(rxtjr; double integrator system [7] can be approximated by a TSM « (ln(m_lsi_l(ti)(pi,l_qi,l)/pi,lpi,l) —ln ,8£—1>
When the system state is far away from the equilibrium, the TSM . .
model (1) does not prevail over the linear counterpart (seftieg q) fori=n—1,.... listhe time froms;(t;) # 0 t0si(ti +ti—1) = 0.
since the termrg’/” tends to reduce the magnitude of the convergenceNOte that the procedure (4)~(6) actually defines a path for the state

rate at a distance from equilibrium. One immediate solution is to intrd-© converge to equilibrium. Indeed, &, . = 0 is considered as
duce the following so-called fast terminal sliding-mode model: n — 1-dimensional flow in the state spacs,—» can be considered as
a subspace with dimension shrunk by unity. Therefeges 0 will be

the result of the: — 1-dimensional dynamic space shrunk oy- 1
times.

% (lIl((¥i718i71(tl_)(Pi—l*fIi—l)/Pi—l‘FPi—l) —1n ’31,71) (7)

s=i1+taxr +0 ,r‘f/p =0 (2)

wherea, 3 > 0. By doing so, we havé, = —azy — 3 :n?“’. For
properly chosen, p, given an initial stater; (0) # 0, the dynamics . ] . ) )
(2) will reachz; = 0 in finite time. The physical interpretation is: We consider the general nonlinear smooth single-input single-output

whenz; is far away from zero, the approximate dynamics becomé8!SO) system

I1l. CONTROL DESIGN USING FTSMs

1 = —ax1 whose fast convergence when far away from zero is well L

understood. When closetg = 0, the approximate dynamics becomes @ =f(x) + g(x)u

i1 = —B2?” which is a terminal attractor [3]. More precisely, we can y =h(x) (8)
solve the differential (2) analytically. The exact time to reach z€ro,

is determined by where f and g are the smooth vector fields dR™, % is the scalar

smooth field oriR™, andu € R.

s _ P (r—a)/p | | ) Before we proceed, we introduce several notations. The Lie deriva-
= ——— (In(ax -1 . . . ! L o
a(p —q) ( n(a1(0) +0)=ln ﬁ) ©) tive of h with respect tof is defined as the directional derivatige h =
vh whereyl = (9%/9x) representing the gradient éf Higher
and the equilibrium 0 is a terminal attractor. order Lie derivatives can be defined recursivelyas = v(ﬁ}’lh )f
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fori = 1,2,... with LU h = h (see [8]). Without loss of generality, Substituting the control (11) into (13) yields —15,—1 = —K|sn—1]|
we assume that the SISO system (8) has relative degmee region which means that the sliding mode_; = 0 will then be reached in

Qe R". finite time. In fact, following Section Il, from any initial state@t = 0
With the assumption, if2, the nonlinear system (8) can be transthe time to reach zero is, = |S»—1(0)|/%k. Hence, the proof of the
formed to the following normal form: theorem is completed. Q.E.D.
. ' The control (11) involves calculation of the terms
Zi=zipr i=1,...,n—-1 £Z+’J‘Bulszk+l/”“ kE = 0,...,n — 2 that is lengthy and trivial.
Zn =a(z) +b(2)u (9) Here we present a qualltatlve result for the calculation of these terms
i i . and also show that these terms are independent of the centrol
wherez; = Ly h(z) fori =1.....n,a(z) = L}h(x), andb(z) = Theorem 2: For anyk € {0,1,....n — 2},
LoL%™ Yh(a) ;é 0. The transformation matrix is easily seen:as=
<I>(r) [h(x), Lsh(x)...., L3 h(2)]". The dynamics (9) can also Lo st = fu(2) (14)

be written as wheref;. is a continuous nonlinear function.

Proof: We prove this proposition using the mathe-

2= A(z) + B(2)u 10 . i .
: (2) + B(z)u (10) matical |r}ductlon approach/ Le = 0, then apparently
rn—1 — n—1 — —
whereA(z) = [22,..., zn—1,a(2)]" andB(z) = [0,...,0,b(2)]*. LA+ZBu530/éO = £4+123u = falz). |—(e'571 = 1, then
The sliding-mode contral should be designed SOthﬁLls’n L < LUm. st = L00%. (22 4 aoz 4 foz{®/P0)/PL which
—K|s,_1], K > 0 therefores,_; = 0 can be reached in finite can be apparently expressed #ig2). Assume fork = ko,
time. Hence, according to (4)—(6); = 0 is reached in finite time. EZ;JF’}BOU ! f’;o /Pra = f1,(z). Let us examine the case bf= ko + 1.
Following are some results on the FTSM control of the SISO nonline&ince
systems. .
Theorem 1: For the system (8), if the contralis designed as Fko _-fk0<'§’€0*1’ Sko—1)
=fro(8kg—2s Skp—2, Skg—2) = -~
U= Ueqg + Udg (12) _fko(s(ko) (ko— 1) ..... 50)
where andsg = z1, thene”) is a function ofz.g 4141, Zko+ts - - - » 21. There-
Ueg = — b 1(2) fore, £7 e Z’;(fl‘/”“‘ is a function of:. Q.E.D.
n—2 The parameterg., pr. must be chosen carefully in order to avoid the
<a(7) + Z (akﬁAJrBu sk 4 B LT "”“)) singularity because there are terms/fr* ' /dt" ="' s25/P% which
— may contain nagative powers so that, whgn,; — 0, « — oo. This
Ug=—"b" 1(:)1; SignN s, —1 problem can be remedied by the following theorem.
K >0 Theorem 3: If
qx n—k—1
with ' > 0 being a constant, then the system will reach the sliding e E—
modes,,—y = 0 in finite time.

Proof: To ensure the finite time reachability of the sliding moddhen. whens,. — 0 sequentially fromk = » —2tok = 0, u is

sn_1 = 0, the conditions, 1 $, 1 < —K|s, 1| should be satisfied. Pounded.
Taking the first-order derivative of,_1, one has Proof: From the rule for therth derivative of a composite func-

tion [10], we have that for functiod'(s)

dar n! d™F B i1 B iz
i S 2i—1/pi—1 - dtn F(S) - ﬁ dsm™ <F) <§)
sinces; = $i—1 + ai—18i—1 + Bicas, T fori=n—1,n— Z i linl ! d ! !

2,...,1 and the/th-order derivative of; is s\ NONK
X A\ (15)

3!
over all solutions in nonnegative integers of the equatios 2i> +
iz + - liy = nandm = iy + 142 + 43 + - - - +7;. For simplicity, let
r = ¢i/px and drop the indek. Since in the sliding mode;. 1 = 0,

. . . dn—2/Pn_2
Sp—1 = Sp—2+ Qp—28,—2 + 81L—2£A+Bu5nn_2 * (12)

i I+1 . !
LoayBuSi = EA:BUS['—L 4+ i1 Ly BySio1

a; 1/p 1

+dz 1L4+BIA(‘5 = o )

then it can be easily calculated that
n—2 n—2 Spi1 = S + arsk + ﬂks%k/l’k —itas+8s =0
Sn_1 —L4+Buso + Z 3;L4+B,, sL + Z Bi L 17}1-&-’;?1‘1' G{k/pk

= P thens = O(s") whens — 0, whereQ is a complexity function.

- - We therefore havd™ F/ds™ = O(s" ™) ands'? = ()4 =
. 3 ke oo ¢ odr—(d—1)
=i, + }: anl 4+/;?“15k + Z mﬁAJr/;;“lszk/m (13) O(s ). So, we then have (16), shown at the bottom of the page.

P e Hencewhern — 0,i.e.,s;; — 0,(n+1)r—n = (n+1)qx/pr—n > 0

da” F(s) = ZO(S,»_M)O(S‘,:IT)O (87‘2(2r—1)) O (3711(17‘—(1—1)))

dtm
_ Z O(s"~™O (Sv'(_’ﬁ+2i2+3i3+...+lil)+(i1+i2+i3+---+il)—(i1+2i2+3i3+---+lil)>

_ZO SO = O (y(”+1)r7n> (16)
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will ensure that (16) is bounded. Also from the above analysis, we have IV. CONCLUSION

n n_, _ (N(n—1) _ V(g™ (n—1) _ o) nr—n-+41
fl fdt"s = (3) ] O(s") ¢ (5. )- Hen<1:Le when We have proposed a fast terminal dynamics is for the design of
s — 0,nr —n+1=ngy/pr —n+1>0wil ensure that!" /dt" s .. . .
. i . R sliding-mode control for SISO nonlinear dynamical systems. The
is bounded. With the above expressions in mind, the control (11) can . .
be rewritten as inherent dynamic properties of the FTSMs have been explored and

conditions to ensure its applicability for control design have been

w=—b""(2) derived. Simulation results of a chaos synchronization problem and
n—2 control of a flexible joint robot arm have shown the effectiveness of

. <a(:) + Z <O (sé"‘k_l)""’/')k_("_k_1)+1) the control strategy developed. The FTSM control has demonstrated

k=0 its superior performance. It should be noted the control strategy

) (Sg‘nfk)qk/pkf(n7k71)>> developed in this paper can be applied to a wide range of applications

i in circuits and systems, for example, in chaos communication and

synchronization, filter designs, etc. Future work will be conducted
+ K sgnsnl) A7) in applying this mechanism to more general problems in control,
optimization, and identification.
For the second term of (17) to be bounded whijle— 0, itis sufficient
that(n — k)qr/pr — (n — k — 1) > 0 for s, — 0 sequentially from
. = n — 2tok = 0 so that the controk is bounded. Q.E.D.
Another kind of singularity is that, durlng_the tra_nS|ent process to- Springer-Verlag, 1992.
ward the_FTSMs, the control may become S|_ngl_JIar if sen‘@acomes ] Z. Man, A. P. Paplinski, and H. R. Wu, “A robust MIMO terminal
zero. This problem can be avoided by prohibiting the trajectory from = gjiding mode control for rigid robotic manipulators|EEE Trans.
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